organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination and absolute configuration of 7α -hydroxyroyleanone

Ibrahim Abdul Razak,^a Abdul Wahab Salae,^b Suchada Chantrapromma,^b‡ Chatchanok Karalai^b and Hoong-Kun Fun^a*§

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 25 May 2010; accepted 30 May 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.027; wR factor = 0.074; data-to-parameter ratio = 11.2.

The title compound [systematic name: 7α ,12-dihydroxy-8,12abietadiene.11.14-dione or (4bS.8aS.10R)-3.10-dihvdroxy-2isopropyl-4b,8,8-trimethyl-1,4,4b,5,6,7,8,8a,9,10-decahydrophenanthrene-1,4-dione], C₂₀H₂₈O₄, is an abietane diterpenoid, which was isolated from the roots of Premna obtusifolia (Verbenaceae). Its crystal structure has been reported previously [Chen et al. (2000). Jiegou Huaxue, 19, 122-125], but the absolute configuration could not be determined using data collected with Mo radiation. This redetermination using Cu radiation shows the the absolute configurations of the stereogenic centres at positions 4b, 8a and 10 to be S, S and R, respectively. Two intramolecular O-H···O hydrogen bonds [one generating an S(5) ring and one generating an S(6) ring] and a number of short C-H···O contacts occur. In the crystal, molecules are linked into infinite chains propagating in [100] by $O-H \cdots O$ hydrogen bonds and weak $C-H \cdots O$ interactions.

Related literature

For background to Verbenaceae, diterpenes and their biological activity, see: Batista *et al.* (1994); Bunluepuech & Tewtrakul (2009); Jonathan *et al.* (1989); Kabouche *et al.* (2007); Kupchan *et al.* (1968, 1969); Nagy *et al.* (1999); Ulubelen *et al.* (2001). For the previous structure determination, see: Chen *et al.* (2000). For hydrogen-bond motifs, see: Bernstein *et al.* (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{28}O_4 \\ M_r = 332.42 \\ Orthorhombic, P2_12_12_1 \\ a = 7.6729 \ (1) \ \text{\AA} \\ b = 9.3972 \ (1) \ \text{\AA} \\ c = 24.1946 \ (3) \ \text{\AA} \end{array}$

Data collection

Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.829, T_{\rm max} = 0.871$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.027\\ wR(F^2) &= 0.074\\ S &= 1.04\\ 2578 \text{ reflections}\\ 230 \text{ parameters}\\ \text{H atoms treated by a mixture of} \end{split}$$

independent and constrained refinement

T = 100 K $0.28 \times 0.28 \times 0.20 \text{ mm}$

6475 measured reflections 2578 independent reflections 2564 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$

V = 1744.52 (4) Å³

Cu $K\alpha$ radiation

 $\mu = 0.70 \text{ mm}^{-1}$

Z = 4

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 970 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ 0.13 \ (16)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1O1\cdotsO2^{i}$	0.88 (2)	2.24 (3)	2.9502 (15)	137 (2)
O1−H1 <i>O</i> 1···O4	0.88 (2)	2.52 (3)	2.9399 (14)	109.8 (19)
O3−H1 <i>O</i> 3···O2	0.83 (2)	2.075 (19)	2.5892 (14)	119.8 (19)
O3−H1O3···O4 ⁱⁱ	0.83 (2)	2.42 (2)	3.1635 (14)	148.8 (18)
$C1 - H1A \cdots O2$	0.97	2.33	2.9493 (18)	121
$C5-H5A\cdots O1$	0.98	2.52	2.9933 (17)	110
$C7 - H7A \cdot \cdot \cdot O2^{i}$	0.98	2.42	3.0998 (17)	126
$C15 - H15A \cdots O4$	0.98	2.38	2.8549 (17)	109
C16−H16C···O3	0.96	2.58	3.1654 (19)	119
C17−H17B···O3	0.96	2.53	3.1204 (18)	119
$C20 - H20A \cdots O2$	0.96	2.51	3.1451 (18)	124

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

[‡] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009. § Thomson Reuters ResearcherID: A-3561-2009.

AWS thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811151.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5468).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Batista, O., Duarte, A., Nascimento, J. M. & Simoes, F. (1994). J. Nat. Prod. 57, 858-861.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289–292
- Chen, X., Liao, R.-A., Weng, L.-H., Xie, Q.-L. & Deng, F.-J. (2000). Jiegou Huaxue, 19, 122–125.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jonathan, L. T., Che, C. -T., Pezzuto, J. M., Fong, H. H. S. & Farnsworth, N. R. (1989). J. Nat. Prod. 59, 734–737.
- Kabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem. 102, 1281–1287.
- Kupchan, S. M., Karim, A. & Marcks, C. (1968). J. Am. Chem. Soc. 90, 5923– 5924.
- Kupchan, S. M., Karim, A. & Marcks, C. (1969). J. Org. Chem. 34, 3912-3918.
- Nagy, G., Günther, G., Máthé, I., Blunden, G., Yang, M.-H. & Crabb, T. A. (1999). *Phytochemistry*, **51**, 809–812.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Ulubelen, A., Oksuz, S., Topgu, G., Goren, A. C. & Voelter, W. (2001). J. Nat. Prod. 64, 549–551.

Acta Cryst. (2010). E66, o1566-o1567 [doi:10.1107/S1600536810020544]

Redetermination and absolute configuration of 7*a*-hydroxyroyleanone

I. A. Razak, A. W. Salae, S. Chantrapromma, C. Karalai and H.-K. Fun

Comment

The extracts of Verbenaceae plants were found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009). *Premna obtusifolia* (Verbenaceae), a small tree found in the mangrove forests, is one of the Verbenaceae plants. As part of our study of chemical constituents and bioactive compounds from the roots of *Premna obtusifolia* (Verbenaceae) which were collected from Satun province in the southern part of Thailand, the title abietane diterpenoid (I) was isolated. It was known as horminone (Batista *et al.*, 1994) or 7α -hydroxyroyleanone (Nagy *et al.*, 1999) and the previous reports show that (I) exhibits significant biological activities as tumor inhibitors (Kupchan *et al.*, 1968, 1969; Jonathan *et al.*, 1989), antioxidant (Kabouche *et al.*, 2007) and antibacterial agents (Ulubelen *et al.*, 2001). The crystal structure of (I) has been reported (Chen *et al.*, 2000) but the absolute configuration could not be determined due to no large anomalous dispersion using a data set collected with Mo radiation. Our data of (I) was collected using Cu radiation with Bruker Apex-Duo CCD diffractometer and the absolute configuration at atoms C10, C5 and C7 (or positions 4b, 8a and 10 of abietane diterpenoid) were determined as *S*,*S*,*R* making use of the large anomalous scattering of Cu Ka *X*-radiation with the Flack parameter being refined to 0.13 (16). We report herein the crystal structure of (I) determined from the Cu data.

The molecule of (I) has three fused six membered rings (Fig. 1). The two cyclohexanes rings are *trans* fused. One cyclohexane ring (C1–C5/C10) is in a standard chair conformation whereas the other (C5–C10) is in half chair conformation, with the puckering parameter Q = 0.5419 (15) Å, $\theta = 51.68 (16)^{\circ}$ and $\varphi = 21.6 (2)^{\circ}$ (Cremer & Pople, 1975). The benzoquinone ring (C8–C9/C11–C14/O2/O4) is slightly twisted with the maximum deviations of 0.060 (1) and -0.052 (1) Å for atoms C9 and C11, respectively. The O2, O3 and O4 atoms lie close to the mean plane of the C8–C9/C11–C14 ring with the *r.m.s.* of 0.0543 (1). The bond angles around C11 and C14 are indicative of *sp*² hybridization for these atoms. The orientation of the propanyl group is described by the torsion angles C14–C13–C15–C17 = -118.43 (14)° and C14–C13–C15–C16 = 116.53 (14)°. Intramolecular O1–H1O1···O4 and O3–H1O3···O2 hydrogen bonds (Table 1) generate S(6) and S(5) ring motifs, respectively (Fig. 1) (Bernstein *et al.*, 1995). The bond distances in (I) are within normal ranges (Allen *et al.*, 1987).

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Fig. 2 and Table 1). The molecules are linked into infinite one dimensional chains along the [1 0 0] (Fig. 2) through O1—H1O1···O2 and O3—H1O3···O4 hydrogen bonds and weak C7—H7A···O2 interactions (Table 1).

Experimental

The air-dried roots of *premna obtusifolia* (4.5 kg) were extracted with CH_2Cl_2 (2 × 20 *L*) at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark yellow extract (40.5 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 12 fractions (F1—F12). Fraction F4 was further purified by QCC using hexane-acetone (9:1), yielding the title compound (57.5 mg). Yellow blocks of (I) were recrystallized from n-hexane after several days.

Refinement

Hydroxy H atoms attached to O1 and O3 were located from the difference map and isotropically refined. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH₂ and 0.96 Å for CH₃ atoms. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atom for methyl H atoms and $1.2U_{\rm eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.78 Å from H7A and the deepest hole is located at 0.95 Å from C11.970 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids. Intramolecular O—H…O hydrogen bonds are shown as dashed lines.

Fig. 2. The crystal packing of (I) viewed along the b axis, showing one dimensional chains along the [1 0 0]. Hydrogen bonds are shown as dashed lines.

(4bS, 8aS, 10R) - 3, 10 - dihydroxy - 2 - is opropyl - 4b, 8, 8 - trimethyl - 1, 4, 4b, 5, 6, 7, 8, 8a, 9, 10 - decahydrophenanthrene - 1, 4 - dione

Crystal data	
C ₂₀ H ₂₈ O ₄	F(000) = 720
$M_r = 332.42$	$D_{\rm x} = 1.266 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2578 reflections
a = 7.6729 (1) Å	$\theta = 5.1 - 62.5^{\circ}$
b = 9.3972 (1) Å	$\mu = 0.70 \text{ mm}^{-1}$
c = 24.1946 (3) Å	T = 100 K
V = 1744.52 (4) Å ³	Block, yellow
Z = 4	$0.28 \times 0.28 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII DUO CCD diffractometer	2578 independent reflections
Radiation source: sealed tube	2564 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.015$
ϕ and ω scans	$\theta_{\text{max}} = 62.5^{\circ}, \ \theta_{\text{min}} = 5.1^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 8$

(*SADABS*; Bruker, 2009) $T_{min} = 0.829, T_{max} = 0.871$ 6475 measured reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.074$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0454P)^{2} + 0.3997P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
2578 reflections	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 970 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.13 (16)

 $k = -10 \rightarrow 10$

 $l = -27 \rightarrow 27$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.39089 (14)	0.84016 (12)	0.26305 (4)	0.0253 (3)
H1O1	0.310 (3)	0.830 (3)	0.2374 (11)	0.077 (9)*
O2	1.09134 (13)	0.67838 (11)	0.21951 (4)	0.0216 (2)
03	1.04729 (13)	0.73182 (11)	0.11546 (4)	0.0209 (2)
H1O3	1.132 (3)	0.720 (2)	0.1363 (8)	0.040 (6)*
O4	0.44447 (13)	0.73046 (14)	0.15053 (4)	0.0300 (3)
C1	0.98219 (19)	0.80709 (16)	0.32516 (6)	0.0198 (3)
H1A	1.0903	0.7775	0.3079	0.024*
H1B	0.9519	0.9001	0.3106	0.024*
C2	1.00975 (19)	0.81849 (16)	0.38772 (6)	0.0228 (3)
H2A	1.0508	0.7278	0.4018	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

1100	1 0099	0 8802	0 2052	0.027*
C3	0.8428(2)	0.8892	0.3932	0.027°
НЗА	0.8124	0.9564	0.4076	0.0233 (3)
H3R	0.8648	0.8584	0.4572	0.028
C4	0.68635 (19)	0.76239 (16)	0.40536 (6)	0.020
C5	0.66070(18)	0.70239(10) 0.74674(15)	0.40550(0)	0.0204(3) 0.0173(3)
U5 Н5л	0.6466	0.8435	0.3284	0.021*
C6	0.51347(18)	0.66017 (16)	0.32182 (6)	0.021
Н6А	0.5401	0.5594	0.3239	0.024*
H6R	0.4137	0.5594	0.3453	0.024
110D C7	0.4137 0.47085 (18)	0.0790	0.5455	0.024
U7A	0.47085 (18)	0.70050 (10)	0.20239 (0)	0.0200 (5)
П/А С9	0.3097	0.0310	0.2400	0.024°
	0.03223(18) 0.70457(18)	0.70904(13) 0.70681(15)	0.22719(0)	0.0181(3)
C9	0.79437(18)	0.70081(13) 0.70011(15)	0.24799(3)	0.0138(3)
C10	0.03020 (17)	0.70011(15) 0.70252(15)	0.31011(6)	0.0109(3)
	0.93920 (17)	0.70252 (15)	0.20709 (6)	0.01/1(3)
	0.90331 (18)	0.72713 (15)	0.14/20(6)	0.0168 (3)
C13	0.74123 (19)	0.74250 (15)	0.12654 (6)	0.0182 (3)
CI4	0.59663 (18)	0.72713 (15)	0.16633 (6)	0.0188 (3)
C15	0.70086 (18)	0.77406 (17)	0.06671 (6)	0.0211 (3)
H15A	0.5738	0.7793	0.0632	0.025*
C16	0.7741 (2)	0.91900 (17)	0.04969 (7)	0.0285 (4)
H16A	0.7297	0.9912	0.0740	0.043*
H16B	0.7397	0.9398	0.0124	0.043*
H16C	0.8990	0.9169	0.0520	0.043*
C17	0.7642 (2)	0.65721 (17)	0.02752 (6)	0.0260 (4)
H17A	0.7154	0.5675	0.0386	0.039*
H17B	0.8890	0.6519	0.0289	0.039*
H17C	0.7278	0.6789	-0.0095	0.039*
C18	0.5232 (2)	0.83806 (18)	0.42719 (6)	0.0266 (3)
H18A	0.5417	0.8660	0.4649	0.040*
H18B	0.4253	0.7746	0.4252	0.040*
H18C	0.5004	0.9209	0.4051	0.040*
C19	0.7033 (2)	0.62112 (17)	0.43667 (6)	0.0248 (3)
H19A	0.6847	0.6372	0.4754	0.037*
H19B	0.8178	0.5827	0.4310	0.037*
H19C	0.6179	0.5551	0.4231	0.037*
C20	0.8991 (2)	0.54667 (15)	0.32229 (6)	0.0202 (3)
H20A	0.9797	0.5171	0.2942	0.030*
H20B	0.8005	0.4838	0.3225	0.030*
H20C	0.9554	0.5439	0.3577	0.030*
Atomic displacement	nt parameters ($Å^2$)			

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0192 (5)	0.0318 (6)	0.0248 (5)	0.0057 (5)	-0.0006 (5)	0.0037 (5)
02	0.0130 (5)	0.0305 (6)	0.0214 (5)	0.0023 (4)	-0.0010 (4)	-0.0002 (5)
03	0.0147 (5)	0.0290 (6)	0.0191 (5)	0.0004 (5)	0.0017 (4)	-0.0021 (5)

O4	0.0148 (5)	0.0531 (7)	0.0221 (5)	-0.0006 (5)	-0.0031 (4)	0.0068 (5)
C1	0.0162 (7)	0.0237 (7)	0.0194 (7)	-0.0028 (6)	0.0004 (6)	-0.0023 (6)
C2	0.0203 (7)	0.0257 (7)	0.0224 (7)	-0.0049 (7)	-0.0038 (6)	-0.0034 (6)
C3	0.0261 (8)	0.0248 (8)	0.0190 (7)	0.0001 (7)	-0.0014 (7)	-0.0037 (6)
C4	0.0194 (7)	0.0250 (8)	0.0168 (7)	0.0035 (6)	0.0000 (6)	0.0000 (6)
C5	0.0167 (7)	0.0185 (7)	0.0165 (6)	0.0012 (6)	-0.0003 (6)	0.0031 (6)
C6	0.0159 (7)	0.0256 (7)	0.0183 (7)	-0.0006 (6)	0.0021 (6)	0.0016 (6)
C7	0.0142 (6)	0.0268 (7)	0.0189 (7)	-0.0002 (7)	-0.0001 (6)	0.0019 (6)
C8	0.0168 (7)	0.0183 (7)	0.0192 (7)	-0.0001 (6)	-0.0008 (6)	0.0000 (6)
C9	0.0160 (7)	0.0140 (6)	0.0173 (7)	0.0003 (6)	0.0000 (6)	0.0010 (6)
C10	0.0138 (6)	0.0193 (7)	0.0177 (6)	0.0001 (6)	-0.0003 (6)	0.0003 (6)
C11	0.0160 (7)	0.0149 (7)	0.0205 (7)	-0.0008 (6)	-0.0005 (6)	-0.0026 (5)
C12	0.0163 (7)	0.0163 (6)	0.0178 (7)	-0.0003 (6)	0.0028 (6)	-0.0030 (6)
C13	0.0176 (7)	0.0184 (7)	0.0186 (7)	-0.0004 (6)	0.0007 (6)	-0.0023 (6)
C14	0.0159 (7)	0.0207 (7)	0.0198 (7)	0.0012 (6)	-0.0017 (6)	-0.0002 (6)
C15	0.0169 (7)	0.0291 (8)	0.0174 (7)	-0.0006 (7)	-0.0012 (6)	0.0005 (6)
C16	0.0341 (9)	0.0277 (8)	0.0237 (7)	0.0022 (8)	-0.0033 (7)	0.0057 (7)
C17	0.0295 (8)	0.0317 (8)	0.0169 (7)	-0.0059 (8)	0.0004 (7)	-0.0019 (6)
C18	0.0247 (8)	0.0348 (8)	0.0204 (7)	0.0048 (7)	0.0022 (6)	0.0003 (7)
C19	0.0257 (8)	0.0315 (8)	0.0171 (7)	-0.0025 (7)	-0.0007 (7)	0.0039 (6)
C20	0.0195 (7)	0.0211 (7)	0.0199 (7)	0.0019 (6)	-0.0028 (6)	-0.0007 (6)

Geometric parameters (Å, °)

O1—C7	1.4488 (18)	C8—C9	1.344 (2)
O1—H1O1	0.88 (3)	C8—C14	1.5066 (19)
O2—C11	1.2266 (17)	C9—C11	1.4874 (19)
O3—C12	1.3461 (17)	C9—C10	1.5394 (18)
O3—H1O3	0.83 (2)	C10-C20	1.546 (2)
O4—C14	1.2288 (18)	C11—C12	1.4931 (19)
C1—C2	1.5322 (19)	C12—C13	1.348 (2)
C1—C10	1.543 (2)	C13—C14	1.476 (2)
C1—H1A	0.9700	C13—C15	1.5098 (19)
C1—H1B	0.9700	C15—C17	1.530 (2)
C2—C3	1.522 (2)	C15—C16	1.530 (2)
C2—H2A	0.9700	C15—H15A	0.9800
C2—H2B	0.9700	C16—H16A	0.9600
C3—C4	1.538 (2)	C16—H16B	0.9600
С3—НЗА	0.9700	C16—H16C	0.9600
С3—Н3В	0.9700	C17—H17A	0.9600
C4—C18	1.534 (2)	С17—Н17В	0.9600
C4—C19	1.534 (2)	C17—H17C	0.9600
C4—C5	1.5547 (18)	C18—H18A	0.9600
C5—C6	1.526 (2)	C18—H18B	0.9600
C5—C10	1.5570 (19)	C18—H18C	0.9600
С5—Н5А	0.9800	C19—H19A	0.9600
C6—C7	1.5178 (19)	C19—H19B	0.9600
С6—Н6А	0.9700	С19—Н19С	0.9600
С6—Н6В	0.9700	C20—H20A	0.9600

С7—С8	1.5082 (19)	C20—H20B	0.9600
С7—Н7А	0.9800	С20—Н20С	0.9600
C7—O1—H1O1	101.4 (19)	C1-C10-C20	109.94 (11)
C12—O3—H1O3	107.0 (14)	C9—C10—C5	106.92 (11)
C2-C1-C10	112.22 (12)	C1C10C5	107.24 (11)
C2—C1—H1A	109.2	C20—C10—C5	115.00 (12)
C10-C1-H1A	109.2	O2—C11—C9	123.52 (13)
C2—C1—H1B	109.2	O2—C11—C12	116.22 (13)
C10-C1-H1B	109.2	C9—C11—C12	120.26 (12)
H1A—C1—H1B	107.9	O3—C12—C13	122.83 (12)
C3—C2—C1	111.88 (12)	O3—C12—C11	114.03 (12)
C3—C2—H2A	109.2	C13—C12—C11	123.13 (12)
C1—C2—H2A	109.2	C12—C13—C14	116.18 (12)
С3—С2—Н2В	109.2	C12—C13—C15	124.46 (13)
C1—C2—H2B	109.2	C14—C13—C15	119.36 (13)
H2A—C2—H2B	107.9	O4—C14—C13	120.59 (13)
C2—C3—C4	114.40 (12)	O4—C14—C8	118.62 (13)
С2—С3—НЗА	108.7	C13—C14—C8	120.78 (12)
С4—С3—Н3А	108.7	C13—C15—C17	112.84 (12)
С2—С3—Н3В	108.7	C13—C15—C16	110.95 (12)
С4—С3—Н3В	108.7	C17—C15—C16	110.82 (12)
НЗА—СЗ—НЗВ	107.6	С13—С15—Н15А	107.3
C18—C4—C19	107.48 (12)	С17—С15—Н15А	107.3
C18—C4—C3	107.13 (12)	С16—С15—Н15А	107.3
C19—C4—C3	110.61 (12)	C15—C16—H16A	109.5
C18—C4—C5	108.58 (11)	C15—C16—H16B	109.5
C19—C4—C5	114.52 (12)	H16A—C16—H16B	109.5
C3—C4—C5	108.26 (11)	C15—C16—H16C	109.5
C6—C5—C4	115.24 (11)	H16A—C16—H16C	109.5
C6—C5—C10	110.17 (11)	H16B—C16—H16C	109.5
C4—C5—C10	116.38 (11)	С15—С17—Н17А	109.5
С6—С5—Н5А	104.5	С15—С17—Н17В	109.5
С4—С5—Н5А	104.5	H17A—C17—H17B	109.5
С10—С5—Н5А	104.5	С15—С17—Н17С	109.5
C7—C6—C5	109.42 (12)	H17A—C17—H17C	109.5
С7—С6—Н6А	109.8	H17B—C17—H17C	109.5
С5—С6—Н6А	109.8	C4—C18—H18A	109.5
С7—С6—Н6В	109.8	C4—C18—H18B	109.5
С5—С6—Н6В	109.8	H18A—C18—H18B	109.5
Н6А—С6—Н6В	108.2	C4—C18—H18C	109.5
01	107.49 (11)	H18A—C18—H18C	109.5
O1—C7—C6	108.07 (12)	H18B—C18—H18C	109.5
C8—C7—C6	111.93 (12)	С4—С19—Н19А	109.5
01—С7—Н7А	109.8	C4—C19—H19B	109.5
С8—С7—Н7А	109.8	H19A—C19—H19B	109.5
С6—С7—Н7А	109.8	C4—C19—H19C	109.5
C9—C8—C14	122.44 (12)	H19A—C19—H19C	109.5
C9—C8—C7	123.18 (12)	H19B—C19—H19C	109.5
C14—C8—C7	114.35 (12)	C10—C20—H20A	109.5
	× /		

C8—C9—C11	116.29 (12)	С10—С20—Н20В	109.5
C8—C9—C10	124.29 (12)	H20A—C20—H20B	109.5
C11—C9—C10	119.34 (12)	С10—С20—Н20С	109.5
C9—C10—C1	110.91 (11)	H20A—C20—H20C	109.5
C9—C10—C20	106.82 (12)	H20B—C20—H20C	109.5
C10—C1—C2—C3	-56.85 (16)	C2-C1-C10-C5	55.46 (15)
C1—C2—C3—C4	54.11 (17)	C6-C5-C10-C9	52.09 (15)
C2—C3—C4—C18	-166.79 (12)	C4—C5—C10—C9	-174.34 (12)
C2—C3—C4—C19	76.36 (15)	C6-C5-C10-C1	171.09 (11)
C2—C3—C4—C5	-49.87 (16)	C4C5C10C1	-55.33 (16)
C18—C4—C5—C6	-60.53 (17)	C6-C5-C10-C20	-66.31 (15)
C19—C4—C5—C6	59.57 (16)	C4—C5—C10—C20	67.26 (16)
C3—C4—C5—C6	-176.51 (12)	C8—C9—C11—O2	-168.73 (14)
C18—C4—C5—C10	168.22 (12)	C10—C9—C11—O2	8.2 (2)
C19—C4—C5—C10	-71.68 (16)	C8—C9—C11—C12	10.76 (19)
C3—C4—C5—C10	52.23 (16)	C10-C9-C11-C12	-172.31 (12)
C4—C5—C6—C7	157.64 (12)	O2—C11—C12—O3	-5.63 (19)
C10C5C6C7	-68.21 (14)	C9—C11—C12—O3	174.85 (12)
C5—C6—C7—O1	-73.43 (14)	O2-C11-C12-C13	174.01 (13)
C5—C6—C7—C8	44.75 (16)	C9—C11—C12—C13	-5.5 (2)
O1—C7—C8—C9	107.73 (15)	O3—C12—C13—C14	176.88 (13)
C6—C7—C8—C9	-10.8 (2)	C11—C12—C13—C14	-2.7 (2)
O1—C7—C8—C14	-70.35 (15)	O3—C12—C13—C15	-3.3 (2)
C6—C7—C8—C14	171.12 (12)	C11—C12—C13—C15	177.11 (13)
C14—C8—C9—C11	-7.9 (2)	C12—C13—C14—O4	-175.35 (15)
C7—C8—C9—C11	174.19 (13)	C15—C13—C14—O4	4.8 (2)
C14—C8—C9—C10	175.36 (13)	C12—C13—C14—C8	5.73 (19)
C7—C8—C9—C10	-2.6 (2)	C15—C13—C14—C8	-174.11 (13)
C8—C9—C10—C1	-134.70 (14)	C9—C8—C14—O4	-179.11 (15)
C11—C9—C10—C1	48.64 (17)	C7—C8—C14—O4	-1.0 (2)
C8—C9—C10—C20	105.50 (16)	C9—C8—C14—C13	-0.2 (2)
C11-C9-C10-C20	-71.16 (15)	C7—C8—C14—C13	177.93 (13)
C8—C9—C10—C5	-18.10 (19)	C12-C13-C15-C17	61.75 (19)
C11—C9—C10—C5	165.24 (11)	C14—C13—C15—C17	-118.43 (14)
C2—C1—C10—C9	171.86 (12)	C12-C13-C15-C16	-63.29 (18)
C2-C1-C10-C20	-70.22 (15)	C14—C13—C15—C16	116.53 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
01—H101····O2 ⁱ	0.88 (2)	2.24 (3)	2.9502 (15)	137 (2)
O1—H1O1···O4	0.88 (2)	2.52 (3)	2.9399 (14)	109.8 (19)
O3—H1O3···O2	0.83 (2)	2.075 (19)	2.5892 (14)	119.8 (19)
O3—H1O3···O4 ⁱⁱ	0.83 (2)	2.42 (2)	3.1635 (14)	148.8 (18)
C1—H1A···O2	0.97	2.33	2.9493 (18)	121
C5—H5A···O1	0.98	2.52	2.9933 (17)	110
C7—H7A···O2 ⁱ	0.98	2.42	3.0998 (17)	126
C15—H15A…O4	0.98	2.38	2.8549 (17)	109

С16—Н16С…ОЗ	0.96	2.58	3.1654 (19)	119
С17—Н17В…О3	0.96	2.53	3.1204 (18)	119
С20—Н20А…О2	0.96	2.51	3.1451 (18)	124
Symmetry codes: (i) $x-1$, y , z ; (ii) $x+1$, y , z .				

Fig. 1

